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Two lectures

Lectures 02 and 03
• Multiple regression 

– Hamilton Ch 3 p65-101 

Seminars 02 and 03
• 02: Choosing dependent variable
• 03. On writing term paper 
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Recall from first lecture: 
Bivariate regression: Modelling a sample

• Yi = b0 + b1 x1i + ei

– i=1,...,n n = # cases in the sample

• ei is usually called the residual (not the error term as 
in the population model)

• Y and X must be defined unambiguously, and Y must 
be interval scale (or ratio scale) in ordinary regression 
(OLS regression)
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Recall from first lecture: 
Bivariate regression: Modelling a population

• Yi = β0 + β1 x1i + εi
• i=1,...,n n = # cases in the population 

• εi is the error term for case no i
• Y and X must be defined unambiguously, and 

Y must be interval scale (or ratio scale) in 
ordinary regression (OLS regression) 
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Summary on bivariate regression
• In bivariate regression the OLS method finds the ”best”

LINE or CURVE in a two dimensional scatter plot
• Best is defined as the “a” and “b” that minimizes the sum of 

squared deviations between the line/ curve and observed 
variable values

• Scatter-plot and analysis of residuals are tools for 
diagnosing problems in the regression

• Transformation (by powers) is a general tool helping to 
mitigate several types of problems, such as 
– Curvilinearity
– Heteroscedasticity
– Non-normal distributions of residuals
– Cases with too high influence

• Regression with (power) transformed variables are always 
curvilinear. Results can most easily be interpreted by 
means of graphs
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Multiple regression: model (1)

• The goal of multiple regression is to find 
the net impact of one variable controlled 
for the impact of all other variables

• Let K= number of parameters in the model 
(this means that K-1 is the number of 
variables)

• Then the population model can be written
• yi = β0 + β1 xi1 + β2 xi2 + β3 xi3 +...+ βK-1 xi,K-1 + εi
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Multiple regression: model (2)

• This can also be written
yi = E[yi] + εi , 

this means that 
• E[yi] is read as “the expected value of yi”
• E[yi] = β0 + β1 xi1 + β2 xi2 + β3 xi3 +...+ βK-1 xi,K-1
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Multiple regression: model (3)

• We will find the OLS estimates of the model 
parameters as the b-values in
ŷi = b0 + b1 xi1 + b2 xi2 + b3 xi3 +...+ bK-1 xi,K-1 

(ŷi is read as ”estimated” or ”predicted” value of yi )
that minimizes the squared sum of the residuals  
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Estimation methods

• The OLS method means that parameters are 
found by minimizing RSS (residual sum of 
squares)

• But this is not the only method for finding 
suitable b-values. Two alternatives are:
– WLS: Weighted least squares
– ML: maximum likelihood 
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More on testing hypotheses
• We can draw many samples from a population
• In every new sample we can estimate new values 

(a new bk-value) of the same population 
regression parameter (βk) 

• If we make a histogram of the many estimates of 
e.g. bk we will see that bk has a distribution. This 
distribution is called the sampling distribution of bk

• Different types of parameters have different types 
of sampling distributions

• Regression parameters (OLS regression bk) have 
t-distributions (Student’s t-distribution)
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E[b]= β

β+σb
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On partial effects (1)

• Example with 2 variables
• If we estimate a model with 2 x-variables

yi = b0 + b1 xi1 + b2 xi2 + ei

it will in principle involve 3 different 
correlations:

• Between y and x1

• Between y and x2 

• Between x1 and x2 
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On partial effects (2)
• This might have been represented by 3 different bivariate

regressions where the third variable was kept constant 

(1) y = ayIx1 + byIx1x1 + eyIx1 x2 constant
(2) y = ayIx2 + byIx2x2 + eyIx2 x1 constant
(3) x1= ax1Ix2 + bx1Ix2x2 + ex1Ix2 y  constant
the index ”yIx1” is read ”from the regression of y on x1”

• Equations (2) and (3) can be rewritten as:
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On partial effects (3)
(2) eyIx2 = y  - (ayIx2 + byIx2x2 ) 
(3) ex1Ix2 = x1 - (ax1Ix2 + bx1Ix2x2 )

We may interpret this as a removal of the effect of  
x2 from y and from x1

We also see that eyIx2 and ex1Ix2 become the new y 
and x1 variables where the effect of x2 has been 
removed 
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On partial effects (4)

• If we, based on this, make a new regression 
êyIx2 =  a + b ex1Ix2

we find that 
a = 0 
b = b1 from the regression 

yi = b0 + b1 xi1 + b2 xi2 + ei

• b1 is in other words the effect of x1 on y after we 
have removed the effect of x2
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Experiments and partial effects

• Experiments investigate the causal 
connection between two variables controlled 
for all other causal impacts

• Multiple regression is a kind of half-way 
replication of experiments – the next best 
solution – and is a close relative of quasi-
experimental research designs
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Partial effects
A leverage plot for y and xk is a plot where 
• y-axis is the residual from the regression of 

y on all x-variables except xk , and 
• x-axis is the residual from regression of xk

on all the other x-variables

The regression line in such a plot will always 
go through y=0 and will have a slope 
coefficient equal to bk
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An example with 2 independent variables

.00023.679.025.593Summer 1980 Water Use

.0006.0723.38320.545Income in Thousands

.0312.16094.361203.822(Constant)
Sig.t Std. ErrorB

Table 3.1 Dependent: 
Summer 1981 Water Use

.00010.2214.65247.549Income in Thousands

.0009.740123.3251201.124(Constant)
Sig. t Std. ErrorB

Table 2.2 Dependent: 
Summer 1981 Water Use

From the table 2.2 (p46) and 3.1 (p68) in Hamilton. In the tables in the book the 
constant is on the last line. SPSS put it on the first line. 
Question: What does it mean that the coefficient of income declines when we add a 
new variable?
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On the addition of new variables
• It is not common that existing theory will give precise 

prescriptions for what variables to include in a model. 
Usually there is an element of trial and error in developing a 
model

• When new variables are added to a model several things 
happen
– The explanatory force increase: R2 increase, but will the increase be 

significant?
– The coefficient of the regression shows the effect on y. Is this effect 

significantly different from 0? 
– If the coefficient is significantly different from 0, is it also so big that it 

is of substantial interest?
– Spurious coefficients can decline. Do the new variable change the 

interpretation of the effect of the other variables?
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Parsimony
• Parsimony is what might be called an aesthetic 

criterion of a good model. We want to explain as 
much as possible of the variation in y by means 
of as few variables as possible

• The adjusted coefficient of determination, 
Adjusted R2, is based on parsimony in the sense 
that it takes into consideration the complexity of 
the data relative to the complexity of the model 
by the difference between n and K 
(n-K is the degrees of freedom in the residual,  
n = number of observations, K = number of estimated 
parameters) 
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Irrelevant variable

• Including irrelevant variables
– A variable is irrelevant if the real effect (β) is 0; or more 

pragmatically, if it is so small that it has no substantive 
interest 

– Inclusion of an irrelevant variable makes the model 
unnecessarily complex and will have the consequence 
that coefficient estimates on all variables have larger 
variance (coefficients varies more form sample to 
sample) 

• Including an irrelevant variable is probably the 
least damaging error we can do 
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Relevant variable
• A variable is relevant if 

– Its real effect (β) is significantly different from 0, and 
– Large enough to have substantive interest, and 
– It is correlated with other included x-variables

• If we exclude a relevant variable all results from our 
regression will be unreliable. The model is unrealistically 
simple 

• Not including a relevant variable is the most 
damaging error we can do. But consider 
requirement 2 and 3. This makes it a lot easier to 
avoid this problem.  
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Sample specific results?
• Choice of variables is a trade-off among risks. 

Which risk is worse depends on the purpose of the 
study and the strength of relations

• With a test level of 0.05 one may easily find sample 
specific results. In about 5% of all samples a 
coefficient that show up as not significantly different 
from 0 will in ”reality” be different from 0 (β ≠ 0) and 
vice versa for those we find to be significantly 
different from 0 mayin reality be 0

• The best defence against this is the theoretical 
argument for finding an effect different from 0
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Hamilton (s74) example

Change in number of people, summer 1981 minus 
summer 1980 

xi6

Number of people living in household at time of water 
shortage (summer 1981)

xi5

Retirement (coded 1 if household head is retired and 0 
otherwise)

xi4

Education of household head, in yearsxi3

Pre-shortage water use, in cubic feet (1980)xi2

Household income, in thousands of dollarsxi1

Post shortage water use (1981)yi
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Table 3.2 (Hamilton p74)

.2321.19880.51996.454Increase in # of People

.0008.64128.725248.197# of People Resident, 1981

.0471.99195.021189.184Head of house retired?

.002-3.16713.220-41.866Education in Years

.00018.671.026.492Summer 1980 Water Use

.0006.0533.46420.967Income in Thousands

.2421.171206.864242.220(Constant)
Sig.t

Std. 
ErrorB

Dependent Variable: 
Summer 1981 Water Use

How do we interpret the coefficient of ”Increase in # of People” ?

What leads to less water use after the crisis?

.031

.277

.058

-.087

.584

.184

Beta
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Standardized coefficients

• Standardized regression coefficients (beta-weights, 
or path coefficients)
bk

s = bk(sk/sy)  (varies between -1 and +1)
• Predicted standard score of yi (ẑiy) = 0.18zi1 + 

0.58zi2 – 0.09zi3 + 0.06zi4 + 0.28zi5 + 0.03zi6

• Standardized variables (z-scores) have standard 
deviation as unit of measurement and a mean of 0

( )i
iX

X

X X
Z

s
−

=
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t-test
• The difference between the observed coefficient (bk) and 

the unobserved coefficient (βk) standardized by the 
standard deviation of the observed coefficient (SEbk

) will 
usually be very close to zero if the observed bk is close 
to the population value. This means that if we in the 
formula 

• t = (bk - βk)/ SEbk substitutes βk = 0 (H0) and find that ”t” is 
small we will believe that the population value βk in 
reality equals 0 (we cannot refute H0) 

• How big ”t” has to be before we stop believing that βk = 0 
we can find from knowing the sampling distribution of bk
and SEbk
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”t” has a sampling distribution called the t-distribution The t-distribution varies 
with the number of degrees of freedom (n-K) and is listed according to level 
of significance α 
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Confidence interval for β (1)
• We have defined t = (bk - βk)/ SEbk This means 

that 
• t * (SEbk ) = bk – βk or βk = bk – t * (SEbk ) where t 

follows the t distribution with n-K degrees of 
freedom

• Chosing a tα-value from the table of the t-
distribution with n-K degrees of freedom then it is 
true that 

• Pr{bk – t * (SEbk ) < βk < bk + t * (SEbk ) } = 1 - α
• Then if βk= bk is correct, a two tailed test will 

have a probability of α to reject H0 : βk= 0 when 
H0 in reality is correct (type I error)
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Confidence interval for β (2)

• This means that there is a probability of α
that βk in reality is outside the interval
< bk – tα(SEbk

) , bk + tα(SEbk
) >

• This is equivalent to saying that
bk – tα(SEbk

) ≤ βk ≤ bk + tα(SEbk
)

is correct with probability 1 – α (our 
confidence of this result is 1 - α )

• Pr{bk – t*(SEbk) < βk < bk + t*(SEbk) } = 1 - α
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F-test: big model against small (1)
Define: 

[ ] [ ]

[ ]

K H K

H
n K

K

RSS RSS
HF RSS

n K

−

−

−

=

−

RSS[*] = residual sum of squares with 
index [*] where * stands for number of 
parameters in the model

Spring 2010 © Erling Berge 32

F-test: big model against small (2)

• Big model: RSS [K]
• Small model: RSS [K-H]
• H is the difference in number of 

parameters in the two models 

FH
n-K will have a sampling distribution 

called the F-distribution with 
H and n-K degrees of freedom 
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Example (Hamilton table 3.1 and 3.2)

n - 1 = 4951093238709.677Total

721393.022n - K = 489352761187.618Residual

.000(a)171.076123412920.343K - 1 =     6740477522.059Regression
Sig.FMean SquaredfSum of Squares

Large model 
Table 3.2 

4951093238709.677Total

856416.551493422213359.440Residual

.000(a)391.763335512675.1192671025350.237
Regression 

(Model) 
(Explained)

Sig.FMean SquaredfSum of Squares
Small model
Table 3.1

Test if the big model (7 parameters) is better than the small (3 parameters)
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Notes to the example
• K = number of parameters of the big model (6 variables 

plus constant) = 7 
• H = K – [number of parameters in the small model (2 

variables plus constant)] = 7 – 3 = 4
• RSS[K-H] = 422213359.440
• RSS[K] = 352761187.618
• n = 496 
• n – K = 496 – 7 = 489
• (RSS[K-H] – RSS{K})/H = (422213359.440 -

352761187.618)/4 = 17363042.9555
• RSS[K] /(n-K) = 352761187.618/489 = 721393.0217
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Testing all parameters in one test
• If the big model has K parameters and we let the 

small model be as small as possible with only 1 
parameter (the constant = the mean) our test will 
have H=K-1. Inserting this into our formula we 
have

[ ] [ ]

[ ]

1

1 1
K

K
n K

K

RSS RSS
KF RSS
n K

−
−

−

−=

−
This is the F-value we find in the ANOVA tables from SPSS
[note: {RSS[1] - RSS[K]} = ESS (explained sum of squares) ]
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Multicollinearity (1)

• Multicollinearity only involves the x-variables, not 
y, and is about linear relationships between two 
or more x-variables

• If there is a perfect correlation between 2 
explanatory variables, e.g. x and w (rxw = 1) the 
multiple regression model breaks down

• The same will happen if there is perfect 
correlation between two groups of x-variables
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Multicollinearity (2)
• Perfect correlation is rarely a practical problem
• But high correlations between different x-variables 

or between groups of x-variables will make 
estimates of their effect unreliable. 

• The effects of two highly correlated variables (like x 
and x2) may be arbitrarily assigned to one, the 
other, or both

• Individual regression coefficients will have large 
standard deviations and t-tests will practically 
speaking have no interest whatsoever

• F-tests of groups of variables will not be 
affected by this

Spring 2010 © Erling Berge 38

Search strategies
• There are methods for automatic searches for 

explanatory variables in a large set of data
• The best advice to give on this is to avoid using it
• One problem is that the p-values of the tests from 

such searches are wrong and too ”kind”. The the
probability of making Type I errors increase with 
the number of tests

• This difficulty is called “the problem of multiple 
comparisons”

• Another problem is that such searches do not 
work well if the variables are highly correlated
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Dummy variables: group differences 

• Dichotomous variables taking the values of 0 
or 1 are called dummy variables, or more 
generally binary variables

• In the example in table 3.2 (p74) xi4 (Head of 
house retired?) is a dummy variable 

• First put into the equation xi4 = 1 then xi4 = 0 
yi = 242 + 21xi1 + 0.49xi2 - 42xi3 + 189xi4 + 248xi5 + 96xi6 og

• Explain what the two equations tell us
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Interaction

• There is interaction between two variables 
if the effect of one variable changes or 
varies depending on the value of the other 
variable

→X Y

W
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Interaction effects in regression (1)

• If we do a non-linear transformation of y all 
estimated effects will implicitly be interaction effects

• Simple additive interaction effects can be included 
in a linear model by means of product terms where 
two x-variables are multiplied 

• ŷi = b0 + b1xi + b2wi + b3xiwi

• Conditional effect plots will be able to illustrate 
what interaction means
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Interaction effects in regression (2)

• An interaction effect involving x and w can 
be included in a regression model by 
means of an auxiliary variable equal to the 
product of the two variables, i.e.

• Auxiliary variable H=x*w 

• yi = b0 + b1*xi + b2*wi + b3*Hi + ei

• yi = b0 + b1*xi + b2*wi + b3*xi *wi + ei
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Example from Hamilton(p85-91)
Let 
• y = natural logarithm of chloride concentration
• x = depth of well (1=deep, 0=shallow)
• w = natural logarithm of distance from road
• xw = interaction term between distance and depth 

(product x*w). Then
• ŷi = b0 + b1xi + b2wi + b3xiwi

First take a look at the simple models without interaction
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Figures 3.3 and 3.4 (Hamilton p85-86)

.145-1.479-.205.477-.706x= BEDROCK OR SHALLOW WELL?

.0008.801.4293.775(Constant)
Sig.tBetaStd. ErrorB

Dependent Variable:
lnChlorideConcentra

.154-1.449-.202.481-.697x= BEDROCK OR SHALLOW WELL?

.615-.506-.071.180-.091w= lnDistanceFromRoad

.0004.381.9614.210(Constant)
Sig.tBetaStd. ErrorB

Dependent Variable:
lnChlorideConcentra

Figure 3.3 is based on

Figure 3.4 is based on 
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ỹ0 = 3.78

ỹ 1 = 3.07

Figure 3.3
ŷi = 3.78 - .71xi

Let 
xi = 1 (deep) 
and 
xi = 0 (shallow)
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Figure 3.4
ŷi = 4.21 -.70xi -.09wi

Let 
xi = 1 (deep) 
and 
xi = 0 (shallow)
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Figures 3.5 and 3.6 (Hamilton p89-91)
Take note of significance changes

.417-.819-.128.099-.081x*w= lnDroadDeep

.886-.144-.022.202-.029w= lnDistanceFromRoad

.0004.050.9053.666(Constant)
Sig.tBetaStd. ErrorBDependent Variable: lnChlorideConcentra

.0052.9421.979.4271.256x*w= lnDroadDeep

.002-3.207-1.9482.095-6.717x= BEDROCK OR SHALLOW WELL?

.006-2.886-.862.384-1.109w= lnDistanceFromRoad

.0004.8281.8799.073(Constant)
Sig. tBetaStd. ErrorB

Also see Table 3.4 in Hamilton p90
Dependent Variable: lnChlorideConcentra

Figure 3.6 is based on 

Figure 3.5 is based on
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Figure 3.5 
ŷi = 3.67 - .03wi -.08xiwi

For
xi = 1 (deep) 
ŷi = 3.67 - .11wi

and for
xi = 0 (shallow) 
ŷi = 3.67 - .03wi
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Figure 3.6   ŷi = 9.07 -6.72xi -1.11wi + 1.26xiwi

For
xi = 1 (deep) 
ŷi = 2.35 + .15wi

and for
xi = 0 (shallow)
ŷi = 9.07 - 1.11wi
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Multicollinearity
• Taking all three variables, x, w, and x*w will 

introduce an element of multicollinearity. This 
means that we cannot trust tests of single 
coefficients

• But as shown in the previous example one can 
not drop any one of the variables without 
dropping a relevant variable

• F-test of e.g. w and z*w simultaneously 
circumvents the test problem, and with some 
experimentation with different models one may 
see if excluding w or x*w changes the relations 
substantially
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Testing in the presence of 
multicollinearity

• To specify a model correctly we may need 
to add terms containing variables already 
in the equation. This applies to
– Interaction terms
– Curvilinear relations (use of squared variables 

in addition to the one present)

• Let us take a look at curvilinear relations: 
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Test for Curvilinear Relations
• Testing for curvilinearity in “age”

– Set age squared = “age2”
• Remember:

– Age is one substance variable that may be 
represented either by one technical variable or by 
two technical variables (somewhat like one variable 
being represented by different ways of coding)

• Substance variable Age is represented by 
– age

or
– age + age2
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Testing for curvilinearity
• Model 0

– (some variables)
• Model 1

– (some variables) + age
• Model 2

– (some variables) + age + age2
• In model 1 the impact of Age is tested by the t-test 

and the corresponding p-value (there is no 
difference between the substance variable and its 
technical representation) 
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Testing  for curvilinearity 2
• In model 1 the test may conclude that Age does 

not contribute to the model. If so we go to model 2
• In model 2 the testing of the impact of the 

substance variable Age (represented by age and 
age2) is done by an F-test of Model 2 against 
Model 0 

• The F-test may conclude that Age does not 
contribute to the model. Then we drop both age 
and age2.

• The F-test may conclude that Age (represented 
by age and age2) contributes significantly to the 
model. Then we keep both age and age2
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Testing  for curvilinearity 3
• In model 1 the test may conclude that Age does 

contribute to the model. If so we may still go to 
Model 2

• If either the t-test of model 1, or the F-test of 
model 2, or both show that Age contributes 
significantly to the model, there are several 
possibilities
– T-test significant, F-test not significant: drop age2, 

keep age
– T-test significant, F-test significant, p-value of age is 

unchanged or higher (compared to model 1) while p-
value of age2 is clearly insignificant: drop age2, keep 
age
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Testing  for curvilinearity 4
• (continued)

– T-test significant, F-test significant, p-value of age 
improves (compared to model 1): keep age2 no matter 
what p-value for age2 is 

– T-test significant, F-test significant, p-value of age shows 
no significance (compared to model 1) while p-value of 
age2 shows clear significance: keep age2 no matter 
what p-value for age is

– T-test significant, F-test significant, p-value of both age 
and age2 show no significance but are fairly close. Then 
the F-test decides. Keep age2. 

• And remember: age2 never appears alone, always 
with age
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Nominal scale variables
• Can be included in regression models by the use of 

new auxiliary variables: one for each category of 
the nominal scale variable. J categories implies 
H(j), j=1,…,J new auxiliary variables

• If the dependent variable is interval scale and the 
the only independent variable is nominal scale 
analysis of variance (ANOVA) is the most common 
approach to analysis

• By introducing auxiliary variables the same type of 
analysis can be done in a regression model
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Analysis of variance - ANOVA

• Analysing an interval scale dependent variable 
with one or more nominal scale independent 
variables, often called factors
– One way ANOVA uses one nominal scale variable
– Two way ANOVA uses two nominal scale variable
– And so on …

• Tests of differences between groups are based 
on an evaluation of whether the variation within 
a group (defined by the ”factors”) is large 
compared to the variation between groups
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Nominal scale variables in regression (1)

• If the nominal scale has J categories a 
maximum of J-1 auxiliary variables can enter 
the regression
If H(j), j=1, ... , J-1 are included H(J) have to be 
excluded

• The excluded auxiliary variable is called the 
reference category and is the most important 
category in the interpretation of the results from 
the regression
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Nominal scale variables in regression (2)

Dummy coding of a nominal scale variable
• The auxiliary variable H(j) for a person i 

is coded 1 if the person belongs to 
category j on the nominal scale variable, 
it is coded 0 if the person do not belong 
to category j

• NB: The mean of a dummy coded 
variable is the proportion in the sample 
with value 1 (i.e. that belongs in the 
category)
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Nominal scale variables in regression (3)

The reference category
(the excluded auxiliary variable)
• The chosen reference category ought to 

be large and clearly defined 
• The estimated effect of an included 

auxiliary variable measures the effect of 
being in the included category relative to 
being in the reference category 
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Nominal scale variables in regression (4)

• This means that the regression parameter 
for an included dummy coded auxiliary 
variable tells us about additions or 
subtractions from the expected Y-value  a 
person gets by being in this category 
rather than in the reference category

• When all auxiliary variables are zero the 
effect of being in the reference category is 
included in the constant
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Nominal scale variables in regression (5)

Testing I
• Testing if a regression coefficient for an 

included auxiliary variable equals 0 
answers the question whether the persons 
in this group have a mean Y value 
different from the mean value of the 
persons in the reference category
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Nominal scale variables in regression (6)
Testing II
• Testing whether a Nominal scale variable 

contributes significantly to a regression 
model have to be done by testing if all 
auxiliary variables in sum contributes 
significantly to the regression 

• For this we use the F-test as explained 
above. See formula 3.28 in Hamilton (p80)
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Nominal scale variables in regression (7)

Interaction
• When dummy coded nominal scale 

variables are entered into an interaction all 
included auxiliary variables have to be 
multiplied with the variable suspected of 
interacting with it

Spring 2010 © Erling Berge 66

On terminology (1)

• Dummy coding of nominal scale variables 
are called different names in different 
textbooks. For example it is

1. Dummy coding in Hamilton, Hardy, and 
Weisberg

2. Indicator coding in Menard (and also 
Weisberg)

3. Reference coding or partial method in 
Hosmer&Lemeshow
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On terminology (2)
• To reproduce results from the analysis of 

variance (ANOVA) by means of regression 
techniques Hamilton introduces a coding of the 
auxiliary variables he calls effect coding. Other 
authors call it differently: 

– It is called effect coding by Hardy
– It is called deviance coding by Menard
– It is called the marginal method or deviance method 

by Hosmer&Lemeshow
• To highlight particular group comparisons 

Hardy (Ch5) introduces a coding scheme 
called contrast coding 
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Ordinal scale variables
• Can be included as an interval scale if the 

unobserved theoretical dimension is 
continuous and distance measures seems 
reasonable

• Also it may be used directly as dependent 
variable if the program allows ordinal 
dependent variables
– In that case parameters are estimated for 

every level above the lowest as cumulative 
effects relative to the lowest level 
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Nominal scale variables 

100.0100.0380Total

100.052.652.6200PEOPLE not 
Farmers or Pol

47.434.734.7132FARMER

12.612.612.648POLITICIAN

Cumulative 
Percent

Valid 
PercentPercentFrequency

TYPE OF 
GROUP
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Example of dummy coding

Reference 
category

1002003Other People

0101322Farmers

001481Politicians

H(3)=
People

H(2)=
Farmer

H(1)=
Pol

NCodeType of group

H (*)variablesAuxiliaryNominal scale

A variable with 3 categories leads to 2 dummy coded  
variables in a regression with the third used as reference
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Example of effect coding

Reference 
category

-1-1 2003Other People

101322Farmers

01481Politicians

H(2)=
Farmer

H(1)=
Pol

NCodeType of group

Auxiliary
variable

Nominal scala

In effect coding the reference category is coded -1. Effect 
coding makes it possible to duplicate all F-tests of ordinary 
ANOVA analyses. 
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Contrast coding

• Is used to present just those comparisons 
that are of the highest theoretical interest

• Contrast coding requires
– That with J categories there have to be J-1 

contrasts
– The values of the codes on each auxiliary 

variable have to sum to 0
– The values of the codes on any two auxiliary 

variables have to be orthogonal (their vector 
product has to be 0)
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Use of dummy coded variables(1)

.0801.758.096.240.421Farmer

.0072.711.147.337.914Pol

.00026.991.1524.106(Constant)
Sig.tBeta

Std. 
ErrorB

Dependent Variable: 
I. of political contr. of sales of agric. est.

• The constant shows the mean of the dependent variable for those who 
belong to the reference category

• The mean of the dependent variable for politicians are 0.91 opinion 
score points above the mean of the reference category

• The mean on the dependent variable for farmers are 0.42 opinion score 
points above the mean of the reference category
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Use of dummy coded variables (2)

.362-.913.338-.309Farmer

.1391.482.382.566Pol

.0302.176.000.000Number of decare land Owned

.00022.954.1864.264(Constant)
Sig.tStd. ErrorB

Dependent Variable: I. of political 
control of sales of agricultural estates 

Compare this table with the previous. What has changed?

How do we interpret the coefficient on ”Pol” and ”Farmer”?
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Recall: 
Multiple regression: model

Let K = number of parameters in the model 
(then K-1 = number of variables)
Population model
• yi = β0 + β1 xi1 + β2 xi2 + β3 xi3 +...+ βK-1 xi,K-1 + εi

i = 1, ... ,N; where N = number of case in the population
Sample model
• yi = b0 + b1 xi1 + b2 xi2 + b3 xi3 +...+ bK-1 xi,K-1 + ei

i = 1, ... ,n; where n = number of case in the sample
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A note on the dependent variable in 
OLS regression:

• The requirement is that Y in OLS regression has 
to be interval scale. It has to be able to take any 
value between minus infinity and plus infinity. 

• Deviations from this may cause problems
• It is not, I repeat NOT, most emphatically NOT 

required that it shall have any particular 
distribution such as a normal distribution

• In some other types of models this is different. 
Maximum likelihood factor analysis for example 
assumes a multivariate normal distribution

• Normal distributions are assumed in order to be 
able to do tests 
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Conclusions (1)

• Linear regression can easily be extended to use 
2 or more explanatory variables

• If the assumptions of the regression is satisfied 
(that the error terms are normally distributed with 
independent and identically distributed errors –
“normal i.i.d. errors”) the regression will be a 
versatile and strong tool for analytical studies of 
the connection between a dependent and one or 
more independent variables
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Conclusions (2)
• The most common method of estimating 

coefficients for a regression model is called OLS 
(ordinary least squares)

• Coefficients computed based on a sample are 
seen as estimates of the population coefficient

• Using the t-test we can judge how good such 
coefficient estimates are 

• Using the F-test we may evaluate several 
coefficient estimates in one test (dummy coded 
variables, interaction terms, curvilinear variables)
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Conclusions (3)

• Dummy variables are useful in several ways
– A single dummy coded x-variable will give a test 

of the difference in means for two groups 
(coded 0 and 1)

– Nominal scale variables with more than 2 
categories can be recoded by means of dummy 
coding and included in regression anlysis

– By using effect coding we can perform analysis 
of variance of the ANOVA type
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